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Aharonov-Bohm effects on nearly-localized quantum states 

Yasuhiro Nagoshit and Shin Takagi 
Department of Physics, Tahoku University, Sendai 980, Japan 

Received 17 April 1991 

Abstract. We consider a charged panicle confined to a ring encircling a magnetic flux. 
Supposing that the particle is trapped by a delta-function potential located on the rin$, 
we examine the flux dependence of the energy and the wavefunction of the  bound State. 
This offers a simple explicit model for the Aharonav-Bohm effect on a system localized, 
but not completely confined, to a simply connected region off a magnetic flux. The result 
is used to show that Berry’s phase for the bound state, when the delta-function potential 
is slowly transported around the ring, consists not only of the Aharanov-Bohm phase 
proportional lo the flux, but also of an extra term which reflects the incomplete localization 
of the state; in the limit of strong binding the extra term depends sinusoidally on the flux. 

1. Introduction 

We consider two closely related questions concerning the Aharonov-Bohm effect 
(Aharonov and Bohm 1959, 1961, Peshkin and Tonomura 1989 and references therein). 
Suppose that a localized system such as an atom is placed in the field-free region 
outside a magnetic flux (e.g. a solenoid). We ask two questions: ( i )  is the energy 
spectrum of the system affected by the flux? (ii) if the system has a non-vanishing total 
charge, will it acquire the Aharonov-Bohm phase (hereafter called the AB phase) when 
it is slowly transported around the flux back to its original position? Here, by the AB 

phase, we mean 27r times the flux in units of fluxons (see section 2). The answer to 
(i) is no, because the vector potential can be eliminated by a suitable gauge transforma- 
tion. The answer to (ii) has been shown to be yes by Berry (19841, who argued that 
this particular version (to be called Berry’s version in this paper) of Aharonov-Bohm 
effect can be interpreted as an example of Berry’s phase (see Berry 1990 and references 
therein). Both conclusions, however, depend on the assumption that the wavefunction 
of the system is completely confined to a simply connected region outside the solenoid. 
This assumption does not hold for a realistic localized system, whose wavefunction 
always has a tail. Therefore we drop this assumption, although we continue to suppose 
that the solenoid is impenetrable. It is then expected that the answer to (i) is yes; the 
energy spectrum will exhibit a typically exponentially small dependence on the flux. 
The answer to (ii) might not be obvious, but there seems to be no reason why Berry’s 
phase should be exactly equal to the AB phase; after all Berry’s gedanken experiment 
deals with a different physical situation from the more traditional case of the scattering 
in the flux line’s vector potential originally treated by Aharonov and Bohm (1959). 

t Present address: Ube-Kohsan CO Ltd, Ube, Japan. 
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The purpose of this paper is to demonstrate the validity of these expectations with 
a simple model, that is, a charged particle confined to a ring around a localized magnetic 
flux; the particle does not move freely along the ring, but can be trapped by a potential 
well. We calculate the energy level for some simple potentials and answer ( i )  affirma- 
tively. A particularly interesting case consists of two delta-function potentials of the 
same depth; if they are sufficiently deep, there are two bound states and the energy 
splitting between them depends sinusoidally on the flux. We also compute Berry’s 
phase for the bound state of a delta-function potential supposing that the position of 
the potential is slowly transported along the ring. It is shown that Berry’s phase does 
not coincide with the AB phase but acquires an exponentially small correction, which 
depends sinusoidally on the flux. The computation is done in two ways. The first 
method uses Berry’s connection, and the second method solves the time-dependent 
Schrodinger equation directly with the help of a rotating frame of reference. The second 
method sheds light on the origin of the correction term; it is caused by the Coriolis 
effect which, being of the first order in the angular velocity of the transportation, 
cannot be neglected however small the speed of transportation may be. We conclude 
that Berry’s phase in Berry’s version of the AB effect is in general different from the 
AB phase. 

2. Model 

We consider a particle of mass m and charge q described by the Schrodinger equation 

f i 2  
2m 

H ( t ) -  --[V-iA(r)I2+V(r, I). (2 . lb )  

The factor q l h c  has been absorbed into the vector potential A. Let r be represented 
by the cylindrical coordinates ( p ,  9, z), and introduce a toroidal domain D defined by 

D = { r l ( p - a ) 2 + z 2 < d 2 }  

where a and d are constants satisfying a > d > 0. We suppose that 

V(r, I)= Vdr, I)+ v d r )  (2.lc) 

where V, is arbitrary at this stage, and V, confines the particle to 0, that is, V, 
vanishes in D and is infinite outside D. A time-independent magnetic field with flux 
6 is supposed to thread through the hole of the torus D. The field is supposed to 
vanish in 0, but it is otherwise arbitrary. Under this condition it is possible to choose 
the gauge so that the vector potential in D takes the form (see appendix) 

A ( r )  d r =  A(q)  d q  (2.2) 

where A ( q )  is an arbitrary 2wperiodic function such that 

A(9) d 9  =2?r@= 2mq6,lhc. (2.3) 

The dimensionless parameter CP represents the flux in units of fluxons hclq. Being an 
arbitrary function, A(p)  can be chosen to be a constant, namely Cp. Unless otherwise 

k2v 
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mentioned, however, we shall work with a generic A(p) in order to make the gauge- 
invariant nature of our treatment manifest. (It is easy to work with a completely general 
gauge; the use of gauge (2.2) is just to simplify the notation.) 

Equation (2.1) must of course he solved for a solution which is single-valued in 
D. For the most part of this paper we restrict rg to the interval [ 0 , 2 ~ ]  and impose the 
boundary condition # ( p ,  0, z, 1) = $(p ,  2 ~ ,  z, t ) .  

3. Energy spectrum 

In this section we suppose that V, is time independent and has the form 

V,(r, t )=  h 2 0 ( p ) / 2 m p 2 .  (3.1) 

The stationary state of energy E can then he separated in the form $ =  
U&, z ) u ( p )  exp(-iEt/fi), where 

{-[d/drg -iA(p)12+ u(rg))u(rp) = ~ - ~ ~ u ( r g P )  (3.2) 

and 

(3.3) 

(3.4) 

with E being a separation constant. Let ED be an eigenvalue of H D ,  then E can be 
expressed as 

E = E D + ( h 2 / 2 m a 2 a 2 ) [ € + O ( d / a ) ] .  (3.5) 

Note that E,  is of the order of h 2 / m d 2 .  If a >> d, that is, if D is a ring of radius U and 
thickness d, then the low lying energy levels are determined by E.  With such a situation 
in mind, we shall calculate E for some simple potentials U. In the rest of this section 
we choose the range of rg to be [ - 0 , 2 ~ - 0 ] ,  where -0 is an infinitesimal negative 
number, without loss of generality. 

3.1. Single delta-function potential 

First we treat the case of 

u(cp)=-a-'gHco) (3.6) 

where g is a dimensionless parameter, the potential being attractive if g > 0. We perform 
a singular gauge transformation 

(3.7) 

to find that C obeys 

C"(p) = -m?&(rg) 
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in the interval [+O, 2 r  -01, where the prime denotes differentiation with respect to 'p. 

It is necessary that i satisfies the boundary condition 

( 3 . 9 ~ ~ )  

(3.9b) 
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i ( + O )  -exp(2?ri@)i(2n -0) = 0 

i ' ( + O )  -exp(2ni@)G'(2?r -0) = -r-'gG(+O). 

It follows that 

i ( p )  = sin(k - ?r@) exp[ik('p/?r - I ) ]  +sin(k+ r@) exp[-ik(p/?r - I)]  (3.10) 
modulo a normalization factor, where k = &'I2, and that allowed values of k are 
determined by 

c o s 2 k - ~ o s 2 ? r @ - ( g / 2 k ) s i n 2 k = O .  (3.11) 

Evidently the spectrum is an even periodic function of @ with period 1; it is sufficient 
to restrict @ to the interval [0, f]. 

The overall behaviour of the spectrum may he understood by a graphical method. 
In particular a bound state, with the convention that a state with negative E is to be 
so called, may be found from the equation 

2K sinh 2K -= 
g cosh 2K -COS 211@ (3.12) 

where we have put k=iK. From now on we use K and 
follows that there is one bound state if and only if 

interchangeably. It 

g >  gc= 1 -cos 2 r @ .  

E =  - 3  2(g -gJ / (2+cos  2r@) 

E =  -1 4g 2 {1+4e-* ~os2?r@-4e-~~[ l+(2g-3) (cos2?r@)~]}  

The energy of the bound state are analytically found, when g = g,, as 

and, when g >> 1, as 

Let us also write down the normalized bound state wavefunction 

i ( p )  = (2~rZ)-'/~{Sinh[K(2 - 'p/ m ) ]  + exp(-2?ri@) sinh( K ( P /  r ) }  

( 2K l .  1 1 .  Z = - s s l n h 4 ~ +  cosh2K--sinh2~ cos2r@-1.  
4K 

When g >> 1 this is approximately given by 

i ( p )  = (K/r)'/2{exp(-Kq/r) + e x p [ - ~ r i @ -  ~ ( 2  - 'p/?r)]}. 

(3.13) 

(3.14a) 

(3.146) 

(3.15) 

It is interesting to compare (3.13) and (3.15) with the bound-state solution em, um 
of the purely one-dimensional problem, that is, the solution of (3.2) with (3.6) when 
'p ranges over the entire real axis and um satisfies the boundary condition u"(+m) = 0; 

i"( 'p)= ( K / T ) ' / ~  exp(-Kl'ppl/r) E m =-! 2 
4g 

Thus, the periodic boundary condition gives rise to an exponentially small correction 
to the binding energy, and the flux causes a correction of the same order of magnitude. 
(When @=: the two effects happen to cancel each other to the leading order of 
exp(-g).) Both are due to the overlap of the tail of the wavefunction as is seen from 
the relationship 

e-K - lu"( i?r)I'. 
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In figure 1 we depict the square of the absolute value of the normalized bound-state 
wavefunction 

~ U ( ~ ) I ~ = ( Z ? T Z ) - ' I ( C O S ~  Z K  -Cos 27&) cosh[2K('p/?r- I ) ]  

+cosh2K C0S2~cP- l )  (3.16) 

for g = 3 and for three typical values of a. When cP# 0, the wavefunction is not 
symmetric with respect to the reflection at 'p = ?r as seen from (3.10); parity is not a 
good quantum number in the presence of a flux. But the absolute value is symmetric. 
Note that 

lu(?r)/u(O)l= /cos ?rcPl/cosh K .  (3.17) 

For completeness we show in figure 2 the result of the numerical solution of equation 
(3.12) as a function of cP for three typical values of g. In figure 3 the same solution is 
plotted as a function of g for three typical values of Cp. 

3.2. Double delta-function potentials 

Next we consider the case of 

u(P)=  - d g , a ( ' p ) + g A V  - e ~ ) l  (3.18) 

where 0 < 0 s 1 .  In this case condition (3.9) need be supplemented by a similar condition 
appropriate at 'p = 0 ~ .  The spectrum is determined by 

cos 2k - cos 2vcP - [ ( g ,  + g2)/2k] sin Zk = (g,g,/4k2){cos 2k - cos[2( 1 - e)k]}. (3.19) 

0.5 

0 1 2 

v l n  

Figure 1. The absolute value squared of the normalized bound-state wavefunction for the 
single delta-function potential with g = 3  for @ = O  (full curve), @=! (dotted curve) and 
@ = t  (dashed curve). 
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0 0.5 
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Figure 2. The ground-state energy for the single delta-function potential with g = O  (full 
curve), g = 3 (dotted curve) and g = 6 (dashed curve). 

Figure 3. The same energy as in figure 2 plotted as a function of g for 0 = 0  (full curve), 
@ = a  (dotted curve) and O = f  (dashed curve). 

As in the previous section we restrict a to the interval [O,;] without loss of generality. 
In what follows we treat the symmetric case only: 

g,  = g, = g. 

Let us first examine the case of the two potentials located diametrically, namely 
8 = 1. We put k = i K  to cast (3.19) into the form 

sinh K 
- 

2 K  _-  
g cosh K * cos ~ a .  

It follows that there is one bound state if 

2(1 -cos Tal < g  <2(1  +cos Ta) 

g>2(1+cos Ta). 
and there are two bound states if 

(3.20) 
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Suppose that the last inequality holds. Let E- be the energy of the ground state and 
E+ be that of the first excited state. Let E ( @ ;  g )  be the bound-state energy for the case 
of the single delta-function potential treated in the previous section. Comparison of 
equations (3.12) and (3.20) shows that 

In particular, for g >> 1, we find 

E * = - ?  ,,g 2 ( l ~ 4 e - ~ ” c o s , ~ @ ) .  (3.21) 

The energy splitting E + - & -  is thus seen to depend sensitively on the flux. A part of 
the numerically calculated spectrum is shown as a function of @ in figure 4 .  

Figure 4. The energies of the ground state and the tint excited stale lor the diametrically 
located double delta-function potentials with g =  0 (full curve), g = 3  (dotted curve) and 
g = 6 (dashed curve). 

When @ = f ,  equation (3.20) becomes identical to (3.12), that is, the spectrum is 
identical to that of the single-potential case and each energy level is doubly degenerate. 
The reason of this degeneracy may be understood from equation (3.171, which shows 
that the bound-state wavefunction for the single potential located at q = 0 vanishes at 
Q = rr; the presence of another potential at Q = TI does not affect the problem in this 
special case. 

For 
energies of the two bound states in the case of g >> 1 and +< O < $ :  

value of resuiis Bre more ioiiip;ii-aie& Lei us \iiriie dawn only the 

E * -  - -ig’{1 -(eg- 1) e-08 7 2  e - @ q l  fe-“-@’8 cos 2TI@]) (3.22) 

where quantities of order exp(-$g) or less have been neglected. 

3.3. A square well potential 

Since delta-function potentials are rather special, we supplement our study by briefly 
describing the case of a square well potential 

(3.23) 
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where 0 < 0 <2.  Putting k = E " ~  and K = ( E  +g/O)1'2 ,  we find that the spectrum is 
determined by 

C O S [ ( ~ - ~ ) ~ ] C O S ( ~ K ) - C O S ~ ~ ~ ~ - -  sin[(2 - 0 ) k ]  sin( OK) = 0. 
2 kK 

We have chosen the parameter g so that 

Y Nagoshi and S Takagi 

k 2 + K 2  . 
(3.24) 

lo2- d g  4 ~ )  = - g / r  

in order to facilitate comparison with the delta function potential considered in section 
3.1; equation (3.24) reduces to (3.11) as 0 tends to zero. In figure 5 we show the 
ground-state energy as a function of 8 for the case of 0 = f  with g = 3 and 6. 

Figure 5. The ground-state energy for the square-well potential with 0 = f  for g = 3  (full 
curve) and g = 6 (dotted curve). 

4. Berry's phase 

In this section we discuss Berry's version of the AB effect. Let us begin with reviewing 
Berry's argument in a slightly simplified situation. We consider the model described 
by equations (2.la-c) with the potential V, now having the form 

V d r , f ) =  V B ( p , v - r p o ( f ) , z )  (4.1) 

where V,(p, rp, z )  is infinite for 07r < Q < 2 r ,  with 0 being a constant less than 2, and 
is otherwise arbitrary. The function rpo(t)  is arbitrary except that it is supposed to 
satisfy ~ " ( 0 )  = 0 and ao( T) = 2r, where T is a positive constant. The potential V ,  thus 
represents a box which completely confines the particle to it and is transported once 
around the flux in time T. (By a box we always mean a hard box as defined above.) 
Let Vr' (r )  be the normalized nth eigenstate of H"'(O), namely H ( 0 )  defined by (2.1) 
and (4.1) but in the absence of the vector potential, and the associated energy eigenvalue 
be E.. It is possible to choose q k o ) ( r )  to be real. For convenience we extend W'R'(p, rp, z )  
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periodically with period ZT to the entire real value of 'p and denote the extended 
function by the same symbol. Now define 

Since Y?' vanishes outside the box, the phase factor is single-valued with respect to 
r, and Y,,(r, 'pp,(f)) is the nth eigenstate of H(t) with the same energy eigenvalue E,, 
as Y?'(r). It also follows from the above definition that Y m ( r ;  'po) is also single-valued 
in the parameter space. By use of this construction Berry computed Berry's connection 
(or 1-form) 

d 
= [A('pp,)+Im ( d r  Y ? ( r )  - W?'( r )1  dg,. 

L J 6p J 
(4.4) 

Since Y?' is real, the integral in the second term is real (and is in fact zero). Hence 
only the first term survives. Consequently Berry's phase y is found to be 

Y =$ P = IoZC A('po) d'pp,=2n@. (4.5) 

Berry's phase in this gedanken experiment thus coincides with the AB phase 2 ~ c P .  
In this argument of Berry, it is essential that the potential V, confines the particle 

completely to the box. Let us now drop this condition and replace the box by a well, 
that is, 

V&,t )=  V w ( ~ , v - d O , z )  (4.6) 

supposing that V&, 'p, z )  vanishes except for 0 < 'p < On, where it takes finite negative 
values. (By a well we always mean a well of finite depth.) Everything else is supposed 
to remain the same as before. Note in particular that the particle is always i n  the 
field-free region. We shall treat this problem with two alternative methods. 

Before doing so, however, a preparation is in order. Let H ( f )  be the Hamiltonian 
defined by ( 2 . 1 )  and (4.6), and +"(r) be the normalized nth eigenstate of H ( 0 )  with 
energy eigenvalue E,(O). We extend Jl,(r)  periodically with period 2n to the entire 
real value of 'p and denote the extended function by the same symbol. Then, 'p - 
' p o ( f ) ,  z) is the nth eigenstate of H ' ( t )  with the same energy E,,(O), where H ' ( f )  is 
obtained from H ( t )  by replacing A(p) with A('p-'po(f)): 

HYt) = exp[ - iG(d t ) ) lH( r )  e x ~ [ i G ( v ~ ( ~ ) ) l  (4.7a) 

If we define 
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then & ( r ;  p,(f)) is the nth eigenstate of H ( t )  with energy E,(O). Consequently the 
spectrum { E . ( t ) }  of H ( t )  is independent of 1. From the above definition it follows 
that $ " ( r ;  po) is single-valued with respect to r and also in the parameter space of pa. 
It is to be noted that equation (4.8) is different from (4.2); the phase factor is different, 
and moreover $ " ( r )  cannot be taken real in general because the vector potential is 
still present in H ( 0 ) .  

Y Nagoshi and S Takagi 

4.1. Method of Berry's connection 

Let us specialize to the model of section 3.1 and identify V, with the delta-function 
potential via equations (3.1) and (3.6). We want to compute Berry's connection for 
the bound state. We denote by u(p; p0) the bound state wavefunction when the potential 
is located at p = po. We fix its phase by use of construction (4.8) so that U(?; p0) 
becomes single-valued in the parameter space thus: 

~ ( p ; ~ ) = ~ * ( 9 ; l p 0 ) e x p [ i I ~ d i ~ ' A ( p ' ) - - i  j2r 2n-va du'A(p')]  (4.9) 

where U+ is appropriate for po < p < 2 r  and U- is appropriate for O <  p < vu. They 
are given in terms of 6 defined by (3.14) as 

u + ( p ;  9 0 )  = 6(v - VO) 

u _ ( q ;  po) = exp(2ri@)i(2?r - po+ p)  

or explicitly as 

ul(p; po)=(ZrZ)-"2{s inh[Z~T~(p  -pp,)/?r]*exp(T2ri@) sinh[K(p-ppu)/?rl). 

We therefore find that 

P = -1m jO2= d p  UYP; rpo) du(v ;  VJ 

277 

=A( -%)  dpo-  Im[ 1 diF u 5 ( ~  %) du+(p; 
0 0  

By use of the property 

Im U: du, = { ( 2 a 2 Z ) - ' ~  sinh 2~ sin 2 r @ )  dpo 

Berry's phase is obtained as 

(4.10a) 

where 

6 y -  - 2 Z - l ~  sinh 2~ sin ZT@ (4.1 Ob) 

gives the deviation of Berry's phase from the AB phase. Note that K is a function of 
g and @ as defined by equation (3.12), and that Sy is an odd periodic function of @ 
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with period 1. In figure 6 we show 6y  as a function of CP for typical values of g. When 
g >> 1, Sy is exponentially small and depends sinusoidally on CP: 

( 4 . 1 1 ~ )  6 y  = -2g2 e-g sin 2 d  

in other words 

6y--rr-‘as/JCP (4.1 1 b )  

where E is the bound-state energy (3.13). 

4.2. Mefhod of roraring frame 

In order to obtain a deeper insight into the origin of the correction term Sy, we 
reconsider the same problem from a different point of view. We attempt to solve the 
time-dependent Schrodinger equation (2.1) with the potential (4.6) under the initial 
condition 

@(r,O)=@,(r) 
where @.(I) is the eigenstate of H(0) introduced just before equation (4.7). 

ates (p,  q’, z )  such that 
It is convenient to introduce a rotating frame of reference with cylindrical coordin- 

‘P’ = (D - d r ) .  
With the definition 

@’(& ‘f”. Z, f ) ’ $ ( P ,  9’+%(f) ,  Z, 1 )  

Schrodinger equation (2.1) takes the form 

where HD is defined by (3.4), r stands for ( p ,  ‘p. z) as before, and 

~ ( 1 )  = d P d r ) l d r  

(4.12) 

(4.13) 

(4.14) 

Figure 6. The deviation of Berry’s phase from the A B  phase for g = 3 (full curve) and g = 6 
(dotted curve). 
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The last term h+,(q,  t )  is the electric scalar potential induced by the motion of the 
reference frame. This is most easily seen from 

Y Nagoshi and S Takagi 

A('P) d p  =A('P'+Vn([))[d'P'+w(f) df l .  

This scalar potential may be eliminated by the transformation 

(4.15) 

Recall that A is a 2n-periodic function of 'p, hence the phase factor is a single-valued 
function of r. By use of the property 

*yll) In' df '  A(9, 1') = - jn d'PoA('P+'Po) (4.16) 

equation (4.13) may be converted into 

where 

(4.17) 

is the gauge-invariant mechanical angular momentum around the z-axis. 

We may then use the perturbation theory to obtain 
Now we assume that po changes so slowly that Iw(f) l  remains small all the time. 

$ ( r ,  1) =exp [ -- j n ' d f ' { E " ( 0 ) - w ( [ ' ) ( 9 ) " } ] ~ " ( r )  (4.18) 

where (z), is the expectation value of 2'with respect to the initial state $,(r ) .  By use 
of E . ( t ) = E , ( O )  and equations (4.12) and (4.15) we find 

$(I, f ) = e x p [  -ij: dt'(E.(f')+ h + s ( V - d t ) ,  t ' ) - w ( f X 9 ) J ]  $,(P, 9-rpdf), 2). 

(4.19) 

Note that the argument of qa occurring in +,y is not f '  but 1. The first term on the 
exponential gives the adiabatic dynamical phase associated with the Hamiltonian in 
the inertial frame. Since t/&(r) is 2n-periodic with respect to q, we have 

$" ( P, v - 'Po( TI, 2) = $ n ( P ,  (O - 2 r ,  2) = $ n ( P ,  % 2). 

Similar relationship holds for &. Consequently Berry's phase y is identified as 
T 

d r A ( 9 ,  [ I + ~ Y  ( 4 . 2 0 ~ )  

(4.206) 
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Equation (4.16) shows that the first term of y coincides with the AB phase; in the 
present method it appears as the dynamical phase due to the electric scalar potential 
as viewed from the rotating frame: compare a related consideration by Mondragon 
and Berry (1989). It may thus be concluded that the deviation of Berry's phase from 
the AB phase can be interpreted to arise from the Coriolis coupling -WE of the circular 
motion of the potential to the mechanical angular momentum; since the coupling is 
linear in the angular velocity, its eEect does not vanish even in the adiabatic limit. If 
the potential V, represents a box, then it is intuitively obvious that the mechanical 
angular momentum under consideration vanishes. When V, represents a well, on the 
other hand, the wavefunction may encircle the z-axis and may support a finite angular 
momentum, giving rise to a non-vanishing 6y. 

Let us confirm that formula (4.20) gives the same Berry's phase as computed by 
use of Berry's connection. From formula (4.20) and definition (4.17) of 3, we have 

Since the functions A(p)  and $"(I) are 2 ~ - p e r i o d i c  with respect to 'p, we can rewrite 
this as 

Since the first term is independent of r and the second term is independent of q,, we 
may further rewrite the above equation as 

y = i  j o 2 T d ' p o j  dr$% 'P- 'P~, zi(a/a'pp,+i[A(rp-'pp,)-A(-rp,)l1$,,(p, P-R. 2 ) .  

Finally we use definition (4.8) to find 

(4.21a) 

where 

P = i  dr$:(r; vdd$"(r ;  90). (4.21b) 

We recall that +,,(r; 'po) is single-valued in the parameter space. It follows that the 
above p is nothing but Berry's connection for the nth eigenstate of H. Therefore, when 
applied to the model of section 3.1, formula (4.21) is guaranteed to reproduce previous 
result (4.10). 

1 

8. Concluding remarks 

(i) The models considered in section 3 might be experimentally realizable in future 
by use of an electron confined to a mesoscopic (or even microscopic) ring. Actual 
observation of the energy splitting (see figure 61, for instance, would be a fairly direct 
way to see the behaviour of the tails of bound state wavefunctions and to prove that 
the overlapping of the tails is essential for the AB effect. Although similar phenomena 
are well known in other systems such as a superconducting ring with a normal function, 
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and so on, it would still be interesting to see the phenomenon in the context of a 
single-particle quantum mechanics. To get a rough idea on a possible experimental 
value of the strength g of the potential, suppose that the potential u ( q )  is prepared 
by locally varying the thickness of the otherwise uniform ring. If the thickness is 
augmented by Sd for 0 < 9 < Bsr,  then u ( q )  is of form (3.23) with 

g -  Ba26d/d3. 

(Note that this g is independent of the effective mass m of the electron in the ring if 
m is isotropic.) In view of this result it seems reasonable to expect that g can be varied 
over a wide range. 

( i i )  Even in the case of a box, there is a subtle difference between Berry’s version 
of AB effect as originally discussed by Berry and that discussed at the beginning of 
section 4 in the present paper. In Berry’s original consideration the box was not allowed 
to rotate around its own centre (translational transportation). while in our treatment 
the box rotates once around its centre (rotational transportation), during the transporta- 
tion of the centre round the flux. Our result (4.5) shows that the rotation of the box 
does not matter. Indeed, in the case of a box, it is not difficult to show that Berry’s 
phase is independent of the mode of transportation. In the case of a well, on the other 
hand, we have been able to deal only with the rotational transportation. The treatment 
of the translational transportation is not trivial; as the well is translated around the 
flux, the tail of the wavefunction becomes heavily distorted due to its exclusion from 
the flux region. Also, we have dealt only with a delta-function well. It would be 
interesting to study whether equation (4.1 1 b) is valid or not for a generic deep well. 

(iii) So far the box (or the well) has been supposed to be nonmagnetic, that is, to 
carry no magnetic field of its own. If it is magnetic, a rotation around its centre without 
translation may give rise to Berry’s phase intrinsic to it. One may then ask whether or 
not the total Berry phase for the rotational transportation is the sum of Berry’s phase 
for the translational transportation and the intrinsic Berry phase. 
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Appendix 

In order to show the validity of gauge choice (2.2), we give a constructive proof of 
the following theorem, which is applicable to a more general geometry than that 
considered in the text. As a preparation of the statement of the theorem we introduce 
a toroidal region D. Let (p,  9, z )  be cylindrical coordinates representing point r. Let 
a ( 9 )  and b ( 9 )  be arbitrary 2n-periodic functions satisfying a,,< a ( q ) <  b(q)  with a. 
being a positive constant. Let e&, 9 )  be arbitrary functions 2n-periodic in 9 such 
that c_(p, q)<O<c+(p,  q )  for a ( 9 )  < p <  b ( q )  and that c*(p, q )  = O  for p < a ( q )  and 
p 3 b(9).  Region D is then defined by 

D={rIc-(p,  ~ ) < Z < C + ( P ,  9)) 
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Theorem. Suppose that divergence-free vector field B( r )  is given everywhere in space, 
that it vanishes identically in 0, and that its flux through the hole surrounded by D 
is 6, that is, 

where 

Let A ( q )  be an arbitrary 2 ~ p e r i o d i c  function satisfying 

then there exists a vector field A(r)  such that 

A(r) d r  = A ( p )  d q  in D 

and that 

(A.4) 

V x A ( r )  = B ( r j  everywhere. ( A 5 j  

RooJ We begin by defining a vector field A'(r) as 

A:(r) = 0. (A.6c) 

A direct substitution shows that A'(r) is a solution of (AS). Next, let A ( p )  be an 
arbitrary 2n-periodic function satisfying (A.3), and let f ( p )  be an arbitrary smooth 
function such that f ( p )  = 1 for p > a. and f ' (0 )  = 0. We define 

A(r1 =fb) Ioq dq'{A(v') - F ( q ' ) l .  (A.7) 

By construction this function is well-defined everywhere; it is single-valued. Hence we 
may perform the gauge transformation 

(A.8)  

When r is in 0, the integrand of ( A d a )  and that of the first term of (A.66) vanish 
identically, and the upper limit of the second integral of (A.66) can be replaced by 
a(qp). Consequently 

A(r)  d r -  A'(r) d r +  dA(r). 

ix 9. (A.!?) A ' ( - \  A .  = f i ( , * \  A,* 
- , r , " . - '  l l , " Y  

Since f ( p )  = 1 for p > a, and afortiori in 0, we also have 

d N r )  = {A(ppJ - F('P)I d v  in D. (A.lO) 

Equations (A.S)-(A.10) prove (A.4). 0 
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